Building Blocks of Python
Programs

Comments

We want people to be able to read and understand
our programs. The # symbol introduces a
comment, which is a note for human readers of the
code. Comments are ighored by computers.
Anything to the right of a # symbol is part of the
comment and ignored.

You should get in the habit of putting a comment
at the top of every program saying at least

a) Your name

b) What the program does

Here is a nice format for this
gradebook.py
This simulates a digital gradebook
author: Bob Geitz
Last modified Augusut 30, 2017

Variables

A variable is a name that represents something in
your program.

Variable names start with a letter and consist of
letters, digits, and underscores. No spaces,
periods, hyphens, etc.

Here are some good variable names
averageScore
letterCount
letter count

Most programming languages require variables to
be declared, which requires saying what kind of
data the variable can hold. There are no variable
declarations in Python. You create a variable by
giving it a value, as in

X=5

Assignment statements give values to variables.
We use = for this. We can say

X=5
X=6
The first use of a variable creates it, so the line x=5
creates variable x and puts the value 5 into it. The
line x=6 changes the value stored in x to 6.

Don't confuse = (for assignments) with == (for
comparisons)

Here are 4 simple types of data:

* Integers: 2,-3,0

* Floats: 3.14,-6.2,5.0

* Strings: "Bob", "Oberlin College", ""
e Booleans: True, False

Integer data

* Read with eval(input(<prompt>))
as in
x = eval(input("Enter a number: "))

* Arithmetic operations +, *, -, /, //, %, **

» /is for floating point division: 7/2 is 3.5

o //is for integer division: 7/2 is 3

* **js for exponentiation: 3**4 is 81

* % is the modulus (or remainder) operation
7%51s 2

Note that % (the modulus or remainder operator)
is more useful than you might think:
* | usually pronounced a%b as "a mod b"
Some people say "a remainder b"
b divides evenly intoaif a%bisO
e xisevenifx%2is0; xisodd if x%2is 1
* days d1 and d2 of a given month fall on the
same day of the week if d1%7 is the same as
d2%7.

The Arithmetic Rule for operators +, -, *
If a and b are both integers, then a op b is an
Int.

If either a or b or both are floats, thenaop b
is a float.

There isn't a lot to say about floats except that
they are there. Internally the integer 3 is stored in
a completely different way than the float 3.0. This
makes comparing floats and integers for equality
problematic.

You can convert an integer x to a float with
float(x)

as in
float(3)

which gives you 3.0.

Strings

e Strings are delimited with either single
guotes: 'bob'
or double quotes: "bob"

* read with input()

* if blahis a string that represents a valid
Python expression, then eval(blah) gets the
value of that expression:

e eval("4")is 4.

* The + operator between 2 strings
concatenates or pushes the strings together.
"Carmen" + "Ambar" is "CarmenAmbar"
"Carmen" +" " + "Ambar" is "Carmen Ambar"

* The comparison operators <, <=, ==, >=,
>, = compare strings in dictionary order,
only all of the capital letters come before
all of the lower-case ones.

You can use indexes to get at the individual
characters (letters) of a string. We always start
indexing at O.

Suppose s is the string "abcd". Then s[0] is "a",
s[1] is "b", and so forth. The number of characters
in string s is len(s). So the valid indexes of string s
are any integers between 0 and len(s)-1.

s[a:b] is the portion of string s starting at index 3,
going up to but not including index b. So if s is
"Bob the Great", s[4:7] is "the". Similarly s[a:] is all
of s starting with index a, and s|[:b] is the portion of
s up to but not including index b.

You can even use negative indexes: s[-1] is the last
character of string s. But | find it easy to get
confused with negative indexes so | tend to avoid
them.

Finally, if s is a string then s.upper() is s with its

lower-case letters converted to upper-case.
"King 106".upper() is "KING 106".

There is a similar .lower() method that converts
upper-case letters to lower-case.

Booleans (named after George Boole, a British
logician)

There are two Boolean values: True and False.
Note the capitalization: true has no meaning in
Python, True does.

You can connect two Boolean expression with
and, or, not.

Here is an expression that says variable x has a
value between 1 and 10:

if (x>=1) and (x <= 10):
blah blah blah

It is possible in Python to write this as

1<=x<=10
but | have seen so many people do that incorrrectly
that | much prefer to write compound expressions
with explicit operators like and, or.

